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Principal components analysis of genetic data

PCA can be conducted on population genetic data in at least two major ways; either in a population-
based or individual-based manner. The two approaches differ in how the input data matrix for PCA
is defined, but once this matrix is defined, the steps are identical. Let G represent the input data
matrix, and let it have n rows and m columns.

For our population-based results, we used a data matrix with one row for each of n pre-defined
populations, and one column for each of m bi-allelic loci. The element G(i, j) is initially set to the
frequency of the derived allele at the jth locus in the ith population. The columns of the matrix
are then mean-centered by subtracting from each element the mean of the elements in that column
(so that after normalization, the column means equal zero). Following Cavalli-Sforza et al, we do
not further normalize the columns.

For the individual-based approach, there are no pre-defined populations, and the data matrix
G has one row for each of n individuals and one column for each of m loci. The element G(i, j) is
then set to an integer representing the number of copies of the derived allele found in individual
i at locus j (so that for autosomal data, the entries are 0,1, or 2). Let µ(j) be the mean of the
jth column and p(j) be the maximum likelihood estimate of the allele frequency for that column
(i.e. p(j) = µ(j)/2). Following [1] the matrix G is then normalized by subtracting from element
G(i, j) the column mean µ(j) and then dividing by

√
p(j)(1− p(j)).

In the individual-based approach, we make a slight variation for autosomal dominant markers
(e.g. AFLPs). For autosomal dominant markers, we define an indicator variable I(i, j), that takes
the value 0 (or 1) if an AFLP band is absent (or present) for marker j in individual i. We initially set
G(i, j) equal to I(i, j). We then compute the column means µ(j) and column standard deviations
σ(j). We then normalize the matrix by subtracting from G(i, j) the column mean µ(j) and then
dividing by σ(j), the observed standard deviation.

Given the n×m data matrix G, the first step of PCA is to compute the n×n sample covariance
matrix X among the units of interest (i.e. populations or individuals):

X =
1
n

GG′

where G′ denotes the transpose of G. Some examples of covariance matrices from simulated data
are given in fig. S3.

The second step is to compute the eigenvectors of X. The kth eigenvector will be of length
n with one entry for each individual/population. When geographical coordinates are available for
each individual/population, each eigenvector entry is then naturally associated with a particular
geographical coordinate, and a contour plot or heat map can be made to show how the eigenvector
values vary across geographical space (Specifically, in our manuscript the kth PC-map is a heat map
showing how the entries in the kth eigenvector vary across geographical space). When geographical
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coordinates are not available, a common visualization strategy is to plot the corresponding elements
of one eigenvector against another, producing biplots as in fig. 2 for example.

Simulation details

To generate both individual and population-based data (as described in the Methods Summary),
we used Hudson’s ms software [2]. To simulate L polymorphic loci, we independently simulate L

loci with the number of segregating sites per locus fixed to 1.
For the results of the two-dimensional population-based simulations shown in fig. 1, n = 100,

Ds = 15× 15, D = 31× 31, L = 500, 4Nm = 0.1. For the one-dimensional individual-based results
of fig. 2, the parameters used were n = 50, D = 100, L = 1000, 4Nm = 1.

We also simulated data using an alternative Gaussian-process-based spatial model for allele
frequencies (originally described in [3]). We observed similar sinusoidal patterns in PCs computed
from these data to those we observed in the explicit population genetic simulations using ms (results
not shown). This is as predicted by theory (see main paper) as both models induce a spatial
covariance structure among sampled individuals, with genetic similarity tending to decay with
distance.

Color-coding of Cavalli-Sforza et al’s original PCA maps

Figures 3.11.1-3.11.4, 4.17.1-4.17.5, and 5.11.1-5.11.4 from the “History and Geography of Human
Genes” were scanned in using Adobe Photoshop software. Fig. S12 provides an example of one
of the original images. Adobe Illustrator CS2’s LiveTrace feature was used to create vector-based
representations of each scanned image. Some minor errors in original plots are introduced by
this step but they are only very fine-scale errors in small regions of the graphs. The hash marks
that denote contour plot level intensities in the original images were deleted manually using the
Selection tool. The LivePaint feature was used to fill each contour region with colors meant to
represent the eight levels used in Cavalli-Sforza’s original plots. Specifically, we used a CMYK
color model with the C and K components set to 100%, K set to 100%, and values of M that vary
along a uniform interval between 0 and 100%. In five cases to make the similarity among PC plots
more clear, the ordering of the levels was reversed from that in the original Cavalli-Sforza plot (i.e.,
Africa PC1 & PC4, Asia PC1, PC2, and PC5). Because PCs are arbitrary with respect to having
a positive/negative sign, reversing the order of the levels does not represent a distortion of the
original PCA results.

Analysis of Phylloscopus trochiloides (Greenish warblers) data

To examine the behavior of PCA of spatial data in an empirical context, we applied PCA to a
previously published dataset [4] of amplified fragment length polymorphism (AFLP) data from
greenish warblers (Phylloscopus trochiloides). Greenish warblers are of broader interest because
they are a well-documented example of a ring species complex [5, 4]. Greenish warblers are most
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abundant in western and eastern Siberia. Where these two main populations overlap geographically,
there is no mating between the two, yet the two populations are connected by gene flow via a narrow
band of populations to the south that are arranged in a ring around the Tibetan plateau. While
this species is distributed along a ring, because the warblers do not interbreed across the top
of the ring, greenish warblers can be thought of as inhabiting a one-dimensional habitat. Thus
for our purposes, greenish warblers are an interesting test case for our results regarding PCA in
one-dimensional habitats.

The data collected by Irwin et al [4] consist of 62 AFLP markers typed on 105 individuals from
26 geographic sites. AFLPs are dominant markers, so each marker is typed for presence or absence.
Irwin et al also conducted PCA on this data and plotted PC1 against distance along the ring;
however our analysis differs in a few ways. We normalized each AFLP variable to have a standard
unit variance before applying PCA (similar to [6]), we excluded five sites that are outside of the
central ring (GT,FN,NZ,TU, and YK), and we calculated position along the ring in a different
manner. To calculate position of each individual along the ring we fit an ellipse to the geographic
distribution of sampling sites and then mapped each site onto the ellipse, and took the distance
from an arbitrary point on the ellipse as an indicator of position.

If covariance between each individual’s AFLP markers decays with distance and sampling error
is small, we expect sinusoidal patterns would emerge in the PCA results. Indeed, biplots for PC1
and PC2 (fig. S10) revealed the horseshoe-shaped Lissajous pattern that is expected when plotting
a roughly linear gradient for PC1 against a quadratic form for PC2 (as in fig. 2). In agreement with
our simulation results (eg, fig. 2) PC1 is directly related to location within the one-dimensional
habitat and PC2 is related to distance from the center of the 1-dimensional habitat (fig. S9).
These patterns were also observed if we treated each sampling location as a population and used
population-based PCA on the data (results not shown).

These results are consistent with arguments made by Irwin et al. regarding the presence of
isolation-by-distance in this system. PC3 (fig. S9) does not have a clear relationship to geography,
rather it appears to account mainly for variation among individuals sampled from Eastern Siberia.
Subsequent PCs (data not shown) appear noisy with no clear geographical relationship. This is
consistent with a result we found in simulations, that for smaller datasets (in terms of both number
of loci and individuals) the higher principal components are typically too noisy to recognize the
sinusoidal-like patterns.

Selection of PCs in controlling for population structure

One practical issue regarding PCA-based approaches to controlling for population structure in
association studies is deciding which PCs to use. Although in simulations for a discrete 2-population
model Price et al [7] found results to be relatively robust to which PCs are used, in general omitting
relevant PCs may fail to fully control for structure (e.g. produce an elevated type I error), whereas
including irrelevant PCs would be expected to reduce power. One suggestion in [7] is to select PCs
based on the“significance” of their eigenvalue [6]. In spatially continuous populations, given enough
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data, we expect the number of significant eigenvalues to be large. This is because individuals
sampled from a continuous population can be thought of as being drawn from a large number of
discrete subpopulations exchanging migrants, and for discrete population models, given enough
data, the number of “significant” eigenvalues/PCs is one less than the number of subpopulations
[6]. (In practice, limits on available amounts of data would be expected to yield fewer significant
eigenvalues.) For the example shown in fig. 2 (a sample of 1000 SNPs from 50 individuals from a
linear set of 100 demes with effective migration rate 4Nm = 1), we found using the method of [6]
that 12 eigenvalues (of a possible maximum of 49) are ”significant” at p < 0.05 (fig. S2). If some of
these significant PCs are not correlated with phenotype (once other PCs have been controlled for)
then controlling for them is unnecessary, and may reduce power. This suggests that the problem
of appropriately choosing the number of PCs may warrant further consideration, and we suggest
that an attractive solution to this problem should involve considering whether eigenvectors are
correlated with phenotype.
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Figure S1: Plots of the first four PC-maps for 10 independent simulation replicates
where there is constant homogeneous migration in a 2-dimensional habitat. Parameters
are the same as in fig. 1 of the main text, i.e. 4Nm = 0.1, Ds = 225 (i.e., 15 × 15), D = 961
(i.e., 31 × 31), n = 200, and L = 500. Noteworthy features include: (1) the exact angle of the
gradient in PC1 varies across runs but PC1 is consistently a gradient across the habitat and PC2
is consistently a perpendicular gradient to that of PC1. (2) PC3 is typically a saddle-like shape.
(4) PC4 is typically a mound- or bowl-like shape (note: the sign of the PC is arbitrary, so whether
one views the shape as a mound or bowl is arbitrary). (5) The order of PC patterns sometimes
fluctuates: In replicate 2, PC4 has changed order with the PC-map that is typically expected
as PC5, so that the mound-like shape is present in the PC5 map (not shown). This re-ordering
of the PCs occurs more frequently when smaller numbers of individuals or loci are used (not
shown). (6) In addition to the overall similarity of results across independent replicates, in many
cases replicates show similarity in detail (e.g. PC1 gradients that are in the same direction). For
instance, replicates 4,5,6, and 8 all show a ”north-west / south-east” gradient in PC1 even though
the individual histories of migration in each simulation are independent of one another. Amongst
all 45 possible pairwise comparisons ∼10 show roughly equivalent patterns for PC1 and PC2 [e.g.
pairs (1-2),(3-7),(3-9),(4-5),(4-6),(4-8),(5-6),(5-8),(6-8),(7-9)]
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Figure S2: One-dimensional PC-maps for PCs 10-13 for the same case as in fig. 2 in
the main text. PC12 is the last “significant” axis of variation according to the method of [6].
Parameters for these individual-based simulations are: n = 50, D = 100, 4Nm = 1 and L = 1000.
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1. Example covariance matrix 
from 1-dimensional habitat 

simulations

1. Example Toeplitz matrix 2. Example circulant matrix

2. Example covariance matrix 
from 2-dimensional habitat 

simulations

3. Example block Toeplitz with 
Toeplitz blocks matrix

A B

Figure S3: Examples of the major classes of matrices referred to in the main text. The
matrices are depicted by coloring each element of each matrix in proportion to the magnitude
of the value in the element, where whiter colors represent larger values. Panel A: Examples
of sample covariance matrices from simulated data. For (A1) the rows of the covariance
matrix are ordered by the geographic position of each individual and the simulated data are from
the simulations shown in fig. 2 of the main text. The decrease in values as one moves away from
the matrix diagonal reflects how covariance decays with distance between individuals (note though
that the data also show a boundary effect that increases covariance among individuals near either
end of the habitat). For (A2) the rows of the covariance matrix are also ordered by the geographic
position of the individuals in the 2-d habitat (such that individuals are ordered from “west” to
“east” and then from “north” to “south”). Specifically, this covariance matrix corresponds to the
simulated data used in fig. 1 of the main text and it also shows a general decay of covariance with
distance. Panel B: Structured matrices that arise from idealized scenarios (see main
text). Theoretical results presented in the main text relate to the example toeplitz (B1), circulant
(B2), and block Toeplitz with Toeplitz block matrices (B3). Of particular importance is how (A1)
shows a similar structure to a Toeplitz matrix (B1) for which theoretical results are available and
likewise (A2) shows a similar structure to a block Toeplitz with Toeplitz blocks matrix (B3).
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Figure S4: Plots of 9 basis functions of the two-dimensional Discrete Cosine Trans-
form (DCT) for 15 × 15 sample points. The i, jth element of each plot is equal to
cos(2π(2i+1)u

2·15 ) cos(2π(2j+1)v
2·15 ), where u and v are given as an ordered pair above the image. To

obtain the complete set of 152 basis functions, one must take the corresponding plots for all possi-
ble ordered pairs of u = 0 . . . , 14 and v = 0 . . . , 14.
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Figure S5: Example of biplots of PCs from 2-dimensional spatial data. The left-hand
column contains biplots of the 4 idealized PCs expected from the DCT. The right-hand column
contains biplots of the 4 observed PCs from data from a stepping-stone model simulation (same
simulated data as in fig. 1 of main text, i.e. 4Nm = 0.1, Ds = 225 (i.e., 15 × 15), D = 961 (i.e.,
31× 31), n = 200, and L = 500.)
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Figure S6: Plots of PC-maps for PC1-PC8 from a two-dimensional stepping-stone sim-
ulation where 4Nm = 0.1 in one dimension (“east-west”) and 4Nm = 1 in the other
(“north-south”). The PCs no longer show the four canonical shapes, but they still have clear
sinusoidal patterns. For example PC2 is analogous to the DCT basis function with u = 0,v = 2
(fig. S4). Additional parameters for these simulations are: Ds = 225 (i.e., 15× 15), D = 961 (i.e.,
31× 31), n = 200, and L = 500.

10



Spatial position

P
rin

ci
pa

l c
om

po
ne

nt

−0.2

−0.1

0.0

0.1

0.2

0 20 40 60 80 100

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

PC1

0 20 40 60 80 100

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

PC2

0 20 40 60 80 100

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●
●●●
●●●●●

●●●●●●
●●
●
●●●
●●●●●
●
●●●●●●●●●●●●●●●●●●

●●●

PC3

0 20 40 60 80 100

●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●

●

●●

●●●●●●●●●●●●●●●●
●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●
●●●

●●●
●

●

●●●
●
●
●

●
●
●

●
●
●

●●●
●●

●

●
●●●
●
●

●
●●●●●●
●
●●

●●

●●●

PC4

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●
●●●●
●●
●●
●
●
●●
●●

●●
●●
●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●

0.00 0.10

−
0.

15
−

0.
05

PC1

P
C

2 ●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●●
●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●
●●●
●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●
●●●●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●●
●●●●●
●●●●
●●●
●●
●●●
●
●●●●●●●●●
●●●●●●
●
●●
●●●●●
●●●●●●
●●●●
●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●
●●●●●●●
●●●●
●●●●●●●●●
●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●

●●
●
●
●
●●●●●●●●●●●
●●●●●●●●
●
●
●
●
●●
●
●
●●
●●●●●●●

●
●●●
●●●
●●
●●●●●
●●●●●●●
●
●●●●●
●●●●●●●●●●
●●●●

●
●●●●●
●●●●
●●●●●●●●●●●
●●●●
●
●●●
●●
●●●●●●●
●●●●●
●●●●
●

●
●
●●●●●

●
●●

●●●●
●●

●●●

●
●

●
●

●
●●

●

●●●
●●

●

●
●●●●
●

●
●●●●●●

●
●●

●●

●●●

−0.15 −0.05

−
0.

10
0.

00
0.

10

PC2

P
C

3

●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●

●

●●

●●●●●●●●●●●●●●●●
●

●●●●●●●
●●●●●●●●●●●
●●●●

●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●
●

●●●●
●●●

●●●
●

●

●●●
●

●
●

●
●

●

●
●

●

●●●
●●

●

●
●●

●
●

●

●
●●●

●●●
●

●●

●●

●●●

−0.10 0.00 0.10

−
0.

1
0.

1
0.

2

PC3

P
C

4

Figure S7: An example of the distortion of idealized PCs due to biased spatial sampling.
500 individuals are sampled from a habitat of 100 demes arranged along in a line and genotyped
at 500 polymorphic sites. The effective migration parameter is set to 4Nm = 1. The sampling
distribution is biased towards sampling individuals in the center of the habitat and then sampling
out to the edges of the habitat but with an added bias towards sampling one end of the habitat
slightly more than the other.
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Figure S8: An example of PCs from a sample with discrete and continuous patterns
of variation. Fifty individuals were drawn at random from one of two sampling areas within a
habitat consisting of 100 demes arranged in a line and genotyped at 1000 polymorphic loci. The
individual IDs reflect the order of individuals habitat. The first 22 individuals are from area 1 (the
first ten demes in the linear array of demes) and the last 28 are from region 2 (the last ten demes in
the linear array of demes). As one can see, PC1 separates out individuals of the 2 sampling areas.
PC2 and PC3 reflects the “linear” component within area 2 and area 1, respectively. PC4 and PC5
are the “distance from the center shape” for area 1 and area 2. For the simulations, 4Nm = 1.
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Figure S9: The first three one-dimensional PC-maps for the P. trochiloides data. Geo-
graphic position in this case is equivalent to the position along the ring-shaped habitat.
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Figure S10: PC1 vs PC2 for the P. trochiloides data.
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Figure S11: One-dimensional PC-maps for the same case as in fig. 2 in the main text,
but with the effective migration parameter 4Nm = 100 rather than 4Nm = 1. With
increasing effective migration rates, the sinusoidal patterns become more noisy, particularly for
higher PCs (e.g. PC4 here). Additional parameters for these individual-based simulations are:
n = 50, D = 100, n = 1, and L = 1000.
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Figure S12: Example of an original principal component map from [8] (Figure 3.11.4).
This figure is included to allow readers to see the impact of our re-coloring.
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